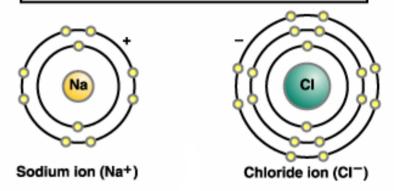
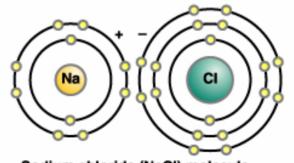

Ionic Bonding

- **Ion**: an atom or molecule that *gains* or *loses* electrons (acquires an electrical charge). Atoms form **cations** (+charge), when they lose electrons, or **anions** (-charge), when they gain electrons.
- **Ionic bonds** are *strong bonds* formed when *oppositely charged ions are attrac to each other*.
- Ionic bonds are **non-directional** (ions may be attracted to one another in any direction)

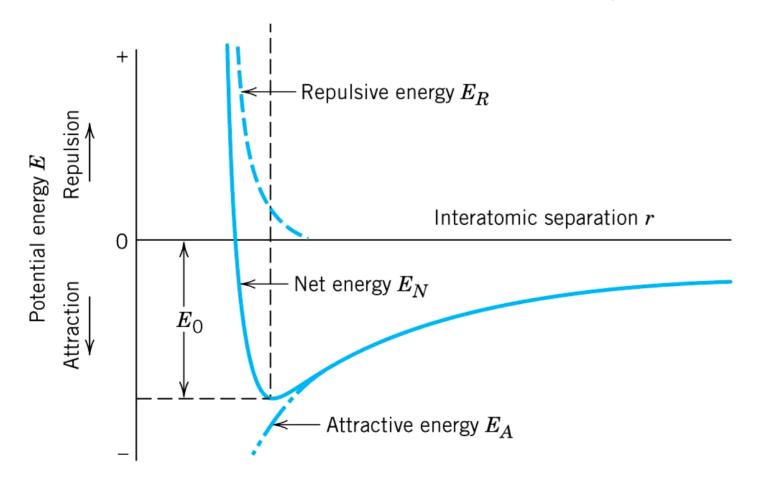

Example:

Atomic Radius: Na (r = 0.192nm) Cl (r = 0.099nm) Ionic Radius: Na (r = 0.095nm) Cl (r = 0.181nm)


Step 1: Sodium gives up its one weakly held electron to chlorine

Step 2: The sodium and chloride ions both have stable outer shells that are filled with electrons

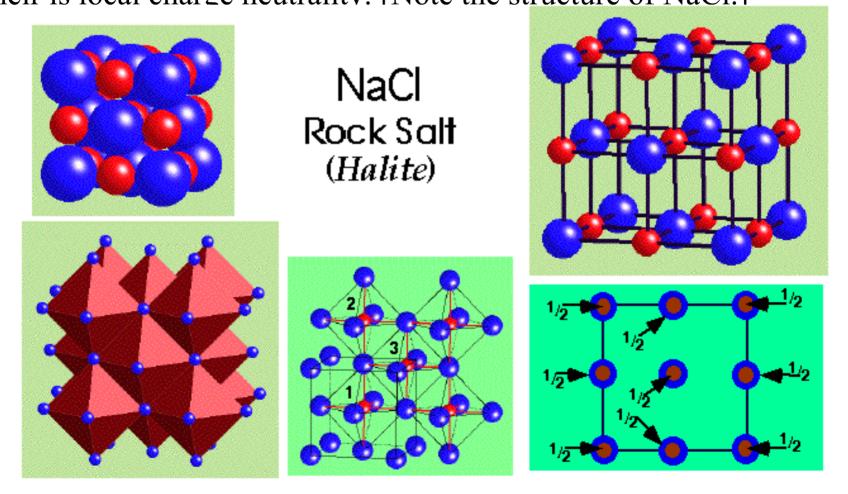
Step 3: The Na+ and CI⁻ions are attracted to each other because of their opposite charges.


Sodium chloride (NaCl) molecule

Inter-ionic Forces for an Ion Attractive force F_{A} Pair $F_{attr} = -\frac{(z_1 \cdot z_2)e^z}{4\pi\varepsilon \ a^2}$ Interatomic separation rRepulsive force F_R Repulsion -Net force F_N $F_{net} = -\frac{(z_1 \cdot z_2)e^2}{4\pi c a^2} - \frac{nb}{a^{n+1}}$

Where z_1 and z_2 are the number of electrons added or removed from the atoms during the ion formation; e is the electron charge (1.6x10⁻¹⁹ C); e0 is the interionic separation distance; e0 is the permittivity of free space (8.85x10⁻¹² C²/(N.m²) and e0 and e0 are constants.

Inter-ionic Energies for an Ion Pair


$$E_{net} = +\frac{z_1 z_2 e^2}{4\pi \varepsilon_0 a} + \frac{b}{a^n}$$

Geometric Arrangement of Ions in an Ionic Solid

Because the ionic bond is nondirectional the ions pack together in a solid in ways which are governed by their relative sizes.

Another important factor is that the ions must be arranged so that their is local charge neutrality. [Note the structure of NaCl.]

Ionic Solids - Properties

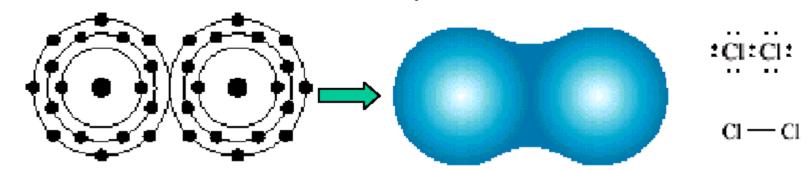
- •Formed by <u>Coulombic attraction</u> between ions.
 - -Examples include Na+ plus Cl- (table salt).
- •Large cohesive energy (2-4 eV/ atom).
 - -Leads to high melting and boiling points.
- •Low electrical conductivity.
 - -No "free" electrons to carry current.
- Transparent to visible light.
 - -Photon energy too low to "free" electrons.
- •Soluble in polar liquids like water.
 - -Liquid dipole of water attracts ions.

Covalent Bonding

Covalent bonding involves the *sharing* of one or more electrons pairs between atoms. Elements that tend to form covalent bonds are those that are:

- **%** strongly electronegative,
- % not strongly electropositive, or
- **%** have similar electronegativities

Covalent bonds can be formed not only between identical atoms but also between different atoms.


By sharing electrons, the atoms completely fill their valence shell and achieve a stable-octet arrangement of electrons.

It forms a strong **localized** and **directional** bond (in the direction of the greatest orbital overlap).

If the atoms in a covalent bond are different from one another, the electron pair may not be shared equally between them. Such a bond is call a *polar covalent bond*.

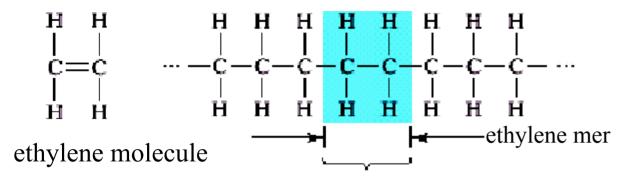
The atoms that are linked will carry a partial negative or positive charge.

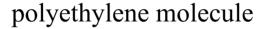
Example: Cl₂ molecule. $Z_{Cl} = 17 (1S^2 2S^2 2P^6 3S^2 3P^5)$ N' = 7, 8 - N' = 1 \rightarrow can form only one covalent bond

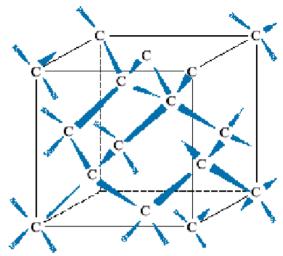
$$H_{\times}^{\bullet}Cl_{\bullet}^{\bullet}$$
 or $^{\delta+}H-Cl_{\bullet}^{\bullet}$

Polar bonds are distributed along a continuum,

		Electronegativity difference	
	0.0	Intermediate	3.0
Bond type	Nonpolar covalent	Polar covalent	lonic
Examples	H ₂ , N ₂ , F ₂	HCI, HI	NaF, CsF


Covalent Solids - Properties


- •Examples include group IV elements (C, Si) and III-V elements (GaAs, InSb).
- •Formed by <u>strong</u>, <u>localized bonds</u> with stable, closed-shell structures.
- •Larger cohesive energies than for ionic solids (4-7 eV/atom). Leads to higher melting and boiling points.
- •Low electrical conductivity.


Due to energy band gap that carriers must "jump," where larger gaps give insulators and smaller gaps give semiconductors.

Example: Carbon materials. $Z_C = 6 (1S^2 2S^2 2P^2)$

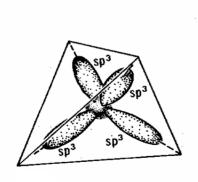
N' = 4, 8 - $N' = 4 \rightarrow can$ form up to four covalent bonds

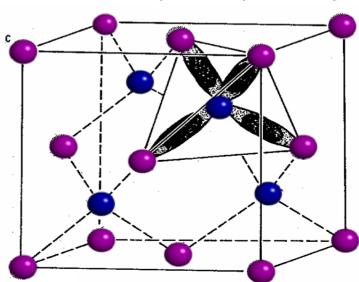
diamond: (each C atom has four covalent bonds with four other carbon atoms)

Covalent Bonding by Carbon

- Ground State: Electron configuration $1s^2 2s^2 2p^2$.
- This electron arrangement indicates that carbon should form **two covalent** bonds with its two half-filled **2p** orbitals.
- In many cases carbon forms **four covalent** bonds of equal strength.
- Hybridization: one of the 2s orbitals is promoted to a 2p orbital so that four equivalent sp^3 hybrid orbitals are produced

Hybrid orbitals

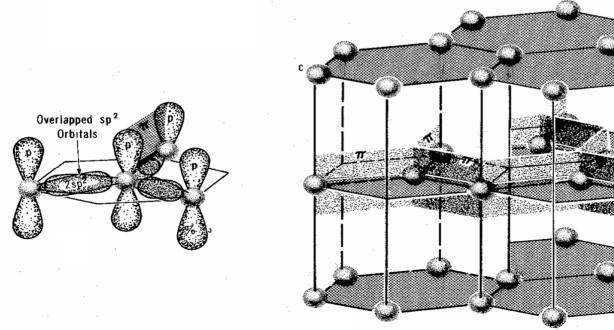

 $2(sp^3)$ is tetrahedrally shaped (energy is identical)


Larger overlap \rightarrow stronger

Directional: each C is tetrahedrally coordinated with 4 others (& each of them with 4 others...)

C-C-C bond angle fixed at 109° 28' (max. overlap). It is also known as σ -bond Note Face-centered Cubic lattice (Diamond – very hard)

The directional character \rightarrow lower coordination & symmetry, density.


Hybrid Orbitals

Alternatively:

The $3 - 2(sp^2)$ orbitals are coplanar & 120° apart

Graphite structure (sp^2 Hexagonal Crystal Class) Overlap similar to diamond w/in sheets (strong too!). Note π -bonding (vertical bonding) between remaining 2p's. This results in delocalized e^- 's in 2p which results in electrical conductivity only within sheets. Good lubricant

Covalent/Ionic mixed bonding

Different atoms widely spaced on the periodic table form mainly ionic bonds.

Different atoms which are closer together form mixed covalent/ionic bonds.

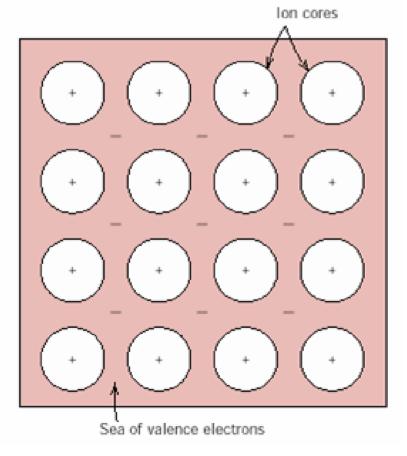
Fraction can be predicted pretty well by electronegativity.

% ionic = $\{1 - exp[-(0.25)(X_a-X_b)^2]\}$ x 100 where X's are electronegativities of the two atoms.

Table 3.2 For Several Ceramic Materials, Percent Ionic Character of the Interatomic Bonds

Material	Percent Ionic Character
CaF ₂	89
MgO	73
NaCl	67
AI_2O_3	63
SiO ₂	51
Sl ₃ N ₄	30
ZnS	18
SIC.	12

Example

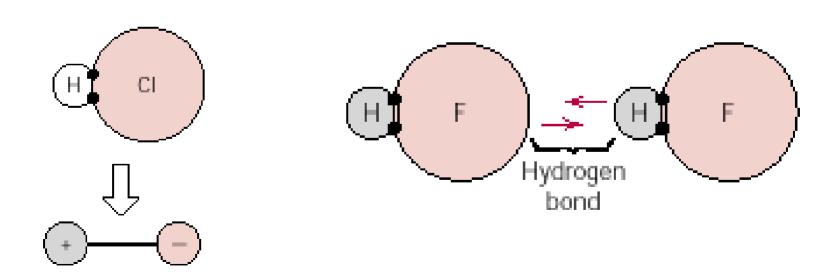

Calculate the percentage ionic character of rock salt NaCl (electronegativities 0.9 and 3.0 respectively)

% ionic =
$$\{1 - \exp[-(0.25)(3.0 - 0.9)^2]\}$$
 x $100 = (1 - 0.33)$ x 100 % ionic = 67%

Metallic Bonding

- Atoms of similar electron negativity and toward left side of PT
- Metallic bonds are directionless bonds \rightarrow high symmetry and density
- Pure metals have same sized atoms
- Closest packing \rightarrow 12 nearest mutually-touching neighbors
- Cubic Closest Packing (CCP) ABCABCABC = FCC cell
- Hexagonal Closest Packing (HCP) ABABABAB = hexagonal cell
- Also BCC in metals, but this is not close-packed (CP) (VII coordination)

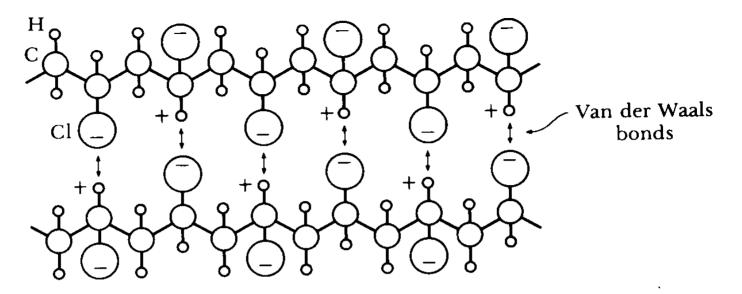
Most metals readily give up their valence electrons when they bond to other metals. Result is positive ion cores in a "sea" of electrons. (this is why metals conduct heat and electricity.) Covalent and ionic bonds lock up electrons, which is why ceramics are electrical and thermal insulators.


Metallic Solids - Properties

- •Formed by Coulombic attraction between (+) lattice ions and (–) electron "gas."
- •Metallic bond allows valence electrons to move freely through lattice (i.e. e⁻ gas).
- •Smaller cohesive energy (1-4 eV).
- •High electrical conductivity.
- •Absorbs visible light (non-transparent, "shiny" due to reemission).
- •Good alloy formation (due to non-directional metallic bonds).

Secondary Bonding

Secondary = van der Waals = physical (as opposite to chemical bonding that involves e- transfer) bonding results from interaction of atomic or molecular dipoles and is weak, ~ 0.1 eV/atom or ~ 10 kJ/mol.


Occur due to electrostatic attraction between dipoles. Dipoles form when regions on molecules have charges concentrated in different areas. H₂O is a common example.

Permanent dipole moments exist in some molecules (called **polar molecules**) due to the asymmetrical arrangement of positively and negatively regions (HCl, H₂O). Bonds between adjacent polar molecules – **permanent dipole bonds** – are strongest among secondary bonds.

Polar molecules can **induce** dipoles in adjacent non-polar molecules and bond is formed due to the attraction between the permanent and induced dipoles.

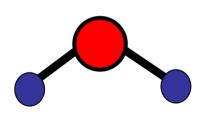
Even in electrically symmetric molecules/atoms an electric dipole can be created by fluctuations of electron density distribution. Fluctuating electric field in one atom A is felt by the electrons of an adjacent atom, and induce a dipole momentum in this atom. This bond due to fluctuating induced dipoles is the weakest (inert gases, H₂, Cl₂).

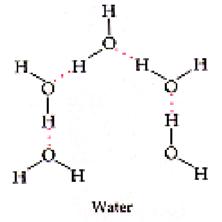
Permanent Dipole Bonds

- •Weak intermolecular bonds are formed between molecules which possess permanent dipoles. (Example: methane, PVC)
- •A dipole exists in a molecule if there is asymmetry in its electron density distribution.

Fluctuating Dipole Bonds

- Weak electric dipole bonding can take place among atoms due to an instantaneous asymmetrical distribution of electron densities around their nuclei. (Example: atoms in noble gases)
- •This type of bonding is termed fluctuation since the electron density is continuously changing.

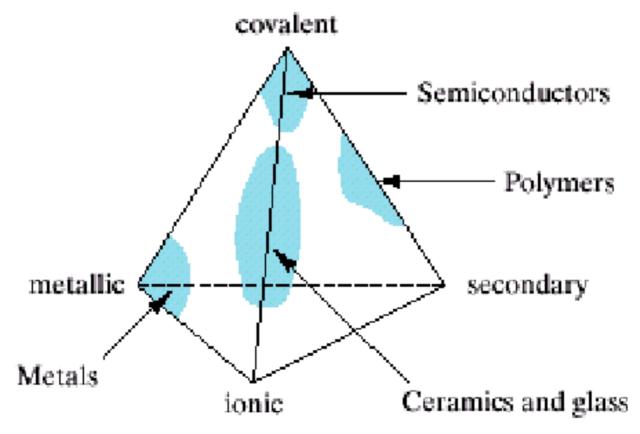

Hydrogen Bond


 \square Permanent dipole-dipole interaction between polar molecules. Example: water, 2H and 1O form a polar covalent bond with an

asymmetrical structure (105° angle).

☐ Hydrogen bonding forms a weak bond with either Fluorine,

Nitrogen, Oxygen



"Hydrogen bond" – secondary bond formed between two permanent dipoles in adjacent water molecules.

Mixed Bonding

- ☐ Metallic-Covalent Mixed Bonding: The *Transition Metals* are an example where *dsp* bonding orbitals lead to high melting points.
- □ Ionic-Covalent Mixed Bonding: Many oxides and nitrides are examples of this kind of bonding. [Values in the table below were calculated from Pauling Equation.

Elements are classified as:

Metals w/ e-neg < 1.9 thus lose e⁻ and \rightarrow cations

Nonmetals > 2.1 thus gain e⁻ and \rightarrow anions

Metalloids intermediate (B, Si, Ge, As, Sb, Te, Po..)

1	Periodic Table IIIA IVA VA VIA VIIA											0 2 He						
2	3 Li	4 Be	of the Elements								5 B	⁶ C	7 N	° O	9 F	10 Ne		
3	11 Na	12 Mg	IIIB	IVB	۷В	VIB	VIIB	_	— VII —		IB	IIB	13 Al	14 Si	15 P	16 S	17 CI	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 Y	²⁴ Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	⁴⁶ Pd	47 Ag	⁴⁸ Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
6	55 Cs	56 Ba	57 *La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	89 +Ac	104 Rf	105 Ha	106 Sg	107 Ns	108 Hs	109 Mt	110 110	111 111	112 112	113 113					

Lanthanide
Series

+ Actinide Series

Ŷ	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Table 2.3 Bonding Energies and Melting Temperatures for Various Substances

		Bondi	Melting		
Bonding Type	Substance	kJ/mol (kcal/mol)	eV/Atom, Ion, Molecule	Temperature (°C)	
Ionic	NaCl	640 (153)	3.3	801	
	MgO	1000 (239)	5.2	2800	
Covalent	Si	450 (108)	4.7	1410	
	C (diamond)	713 (170)	7.4	>3550	
Metallic	Hg	68 (16)	0.7	-39	
	Al	324 (77)	3.4	660	
	Fe	406 (97)	4.2	1538	
	W	849 (203)	8.8	3410	
van der Waals	Ar Cl ₂	7.7 (1.8) 31 (7.4)	0.08 0.32	-189 -101	
Hydrogen	NH ₃	35 (8.4)	0.36	-78	
	H ₂ O	51 (12.2)	0.52	0	